ABSTRACT

We report a case of a child with meningoencephalitis of atypical etiology. The patient developed the disease after an infection in the upper airways with unfavorable evolution. The clinical recovery was only possible after the administration of adequate antibiotic therapy for the etiological agent. This case report describes a child with meningoencephalitis of atypical etiology. The patient developed the disease after an infection in the superior airways with negative evolution. The clinical recovery was possible only after the introduction of adequate antibiotic therapy for the etiological agent.

Keywords: *Mycoplasma pneumoniae*; Meningoencephalitis/complications; Meningoencephalitis/drug therapy; Diagnosis, differential; Case reports

INTRODUCTION

Many etiologic agents can cause the disease, usually virus, mainly enterovirus and herpes simplex virus 1 and 2. Although, other agents should be considered, such as: atypical bacteria (more specifically *mycoplasma pneumoniae*) fungi, Rickettsia, protozoa based on host immune factors, symptoms and geographic location(1).
Additional tests were performed at the time of admission. The blood cell count showed leukocytosis without left shift (leukocytes 17,600/mm³, neutrophils 80%, lymphocytes 15%, monocyte 3%); normal platelet count (357,000/mm³); C-reactive protein 35.6 mg/L; skull tomography without changes; cerebrospinal fluid (CSF) compatible with lymphocytic meningitis (leukocytes 350/mm³, segmented 14%, lymphocytes 58%, monocytes 28%); serum protein 67 mg/dL, chloride 684 mEq/L, glucose 48 mg/dL, lactic acid 14.6 mg/dL; magnetic resonance showed unspecific signal changes in the pons (rhombencephalitis); electroencephalogram with basal activity slightly disorganized because of diffuse slowing and lack of epileptiform waves. Based on neurologic changes at physical examination and in additional tests, we diagnosed meningoencephalitis of probable viral etiology, initiating the treatment with aciclovir.

The patient’s follow up showed slight improvement in sleepiness, but the fever remained. After 5 days of hospital stay new tests were done, and there was partial improvement of cellularity and protein dosage in CSF (leukocytes 231/mm³, segmented 23%, lymphocytes 39%, monocytes 32%, glucose 38 mg/dL, protein 55 mg/dL), blood cell count had a slightly increase of leukocytosis (leukocytes 18,100/mm³, gram-negative rods 2%, neutrophils 82%, lymphocytes 13%, monocytes 3% and platelets 407,000/mm³).

We associated ceftriaxone and clarithromycin, this last one particularly because the the prior respiratory episode. We conducted serology tests for M. pneumoniae. On the 10th admission day and after five days of antibiotic therapy there was significant improvement in the neurological sings and symptoms as well as on the fever curve.

The serology for herpes virus, cytomegalovirus, enterovirus varicella-zoster and M. pneumoniae in the CSF were negative. But, serology for M. pneumoniae in the blood was positive (IgG 1: 1,726 and IgM 1: 3,452 by the immunoenzymatic assay method). The meningoencephalitis was diagnosed as likely being caused by M. pneumoniae, for this reason we stopped the use of ceftriaxone and continued with clarithromycin and acyclovir to complete the treatment. The patient was discharged after 15 days of hospital stay, although her sleepiness remained. We decided to use corticotherapy with prednisone 2 mg/kg/day for 10 days, and gradual reduction of the dosage. An asymptomatic follow up, without neurological sequelae was observed.

DISCUSSION

M. pneumoniae is a common cause of respiratory tract infections and is more common in school-age children and adolescents. The incubation period may vary between 1 and 3 weeks. Its transmission is documented only by symptomatic individuals.

Infection may also occur in other sites than the lungs such as skin, heart, joints and nervous system by direct action, production of neurotoxins or autoimmune mechanisms. This latter mechanism is the more accepted specially because *M. pneumoniae* has in its cytoplasm immunogenic substances like glycoproteins²,³. Some studies show that approximately 2.6 to 4.8% of patients affected by *M. pneumoniae* have clinical neurological manifestations such as encephalitis (30%), transverse myelitis (30%), meningitis (20%), problems in pairs of cranial nerves (20%), cerebellitis (14%), psychiatric changes (8%), and 67% present previous sings of airway infection³,⁴.

The diagnosis of neurological infection by *M. pneumoniae* can be made by laboratory tests, being ELISA the serologic test the most commonly used. The chemocytology of the CSF show moderate pleocytosis of lymphomonocytes, high protein and normal glucose levels.

The etiologic agent can be found in these sites in about 2% of cases³,⁵. The antibiotic of choice to treat the pulmonary infection in children is a macrolide, however, there is no consensus regarding the central nervous system treatment. It is well know that such class of antibiotic does not properly penetrate the blood brain barrier. However, because of its bacteriostatic and immunomodulatory effect, and one of the possible physiopathological mechanism of the disease is immunologic, it would be a treatment option. In addition, the use of corticosteroids, adopted in this case, must be always considered as immunosuppression depending on the degree of neurologic involvement⁶,⁷.

CONCLUSION

The infection by *M. Pneumoniae* is usually found in the pediatric age, therefore, in the differential diagnosis of neurologic problems, which do not have a fair response to an initial antibiotic therapy, this agent should considered as its cause. The appropriated identification of this atypical agent enables more specific and early treatment.

REFERENCES

